To configure the S3 Sink Connector for storing Redpanda topic messages in S3 while using Protobuf, follow these steps:
1. Prerequisites
- Redpanda is configured and running with SASL authentication enabled.
- Your topic uses Protobuf serialization.
- An AWS S3 bucket is set up, with proper permissions to write data.
- Kafka Connect is installed (standalone or distributed mode).
2. Install and Enable the S3 Sink Connector
If you're using Confluent's Kafka Connect or a similar Kafka-compatible service:
Download the S3 Sink Connector Plugin:
- For Confluent users:bash
confluent-hub install confluentinc/kafka-connect-s3:latest
- For open-source setups, download and place the connector
.jar
file in theplugin.path
directory.
- For Confluent users:
Restart Kafka Connect:
- Ensure the connector plugin is loaded by restarting your Kafka Connect service.
3. Define the Protobuf Schema
Protobuf Deserializer: The connector requires a Protobuf deserializer to interpret the data correctly. You can use Confluent’s Protobuf deserializer or implement your own.
Schema Registry: If you’re using a schema registry, configure it with your Protobuf schema.
4. Configure the S3 Sink Connector
Create a JSON configuration file, for example, s3-sink-connector-config.json
:
json{
"name": "s3-sink-connector",
"config": {
"connector.class": "io.confluent.connect.s3.S3SinkConnector",
"tasks.max": "1",
"topics": "your_topic",
"s3.bucket.name": "your-s3-bucket",
"s3.region": "your-region",
"s3.part.size": "5242880",
"flush.size": "100",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"format.class": "io.confluent.connect.s3.format.json.JsonFormat",
"key.converter": "org.apache.kafka.connect.storage.StringConverter",
"value.converter": "io.confluent.connect.protobuf.ProtobufConverter",
"value.converter.schema.registry.url": "http://your-schema-registry:8081",
"schema.compatibility": "FULL",
"aws.access.key.id": "your-access-key",
"aws.secret.access.key": "your-secret-key",
"s3.credentials.provider.class": "com.amazonaws.auth.DefaultAWSCredentialsProviderChain"
}
}
Key Parameters:
connector.class
: Specifies the S3 Sink Connector class.topics
: The topic(s) you want to sink to S3.s3.bucket.name
: The name of your S3 bucket.value.converter
: Set toio.confluent.connect.protobuf.ProtobufConverter
for Protobuf.value.converter.schema.registry.url
: URL for your schema registry.format.class
: Choose the file format for S3 storage (JsonFormat
,AvroFormat
, etc.).
5. Start the Connector
Run the connector in standalone or distributed mode:
- Standalone Mode:bash
connect-standalone connect-standalone.properties s3-sink-connector-config.json
- Distributed Mode:
Post the configuration to the Connect REST API:bash
curl -X POST -H "Content-Type: application/json" --data @s3-sink-connector-config.json http://localhost:8083/connectors
6. Verify Data in S3
Once the connector is running:
- Messages from your topics will be written to S3 in the specified format.
- The default structure is:php
s3://your-bucket-name/topics/<topic-name>/partition=<partition-id>/<timestamp>.json
7. Troubleshooting
- Authentication Issues: Ensure your AWS credentials (Access Key and Secret Key) are correctly configured or use IAM roles for authentication.
- Schema Registry Compatibility: Verify the Protobuf schema is registered and accessible.
Would you like me to help tailor this setup for your specific Redpanda environment?
You said:
ChatGPT said:
To configure the S3 Sink Connector using Redpanda's rpk
connect without internet access, you'll need to handle the following:
Download Connector Files and Dependencies:
- Download the S3 Sink Connector files (JARs and related dependencies) on a machine with internet access.
- Transfer these files to the Redpanda host.
Set Up the
rpk
Connect Plugin Path:- Place the downloaded connector files in a local directory on the Redpanda host.
- Update the
plugin.path
in theredpanda.yaml
file to include this directory.
Prepare the S3 Sink Connector Configuration:
- Use
rpk
to create and manage the S3 Sink Connector.
- Use
Step-by-Step Guide
Step 1: Download the S3 Sink Connector JARs
Download the S3 Sink Connector:
- Download the latest Confluent S3 Sink Connector JAR file and dependencies:
- From Confluent Hub: S3 Sink Connector
- Ensure you also download the Protobuf and Schema Registry Converter JARs if needed.
- Download the latest Confluent S3 Sink Connector JAR file and dependencies:
Transfer to Redpanda Host:
- Use
scp
or a USB drive to move the downloaded files to the Redpanda host.
- Use
Step 2: Configure plugin.path
Place JARs in a Local Directory:
- Create a directory for Kafka Connect plugins on the Redpanda host:bash
mkdir -p /opt/redpanda/plugins
- Move all the JARs into this directory.
- Create a directory for Kafka Connect plugins on the Redpanda host:
Update
redpanda.yaml
:- Open the Redpanda configuration file:bash
nano /etc/redpanda/redpanda.yaml
- Add or update the
plugin.path
entry to include the connector path:yamlrpk: connect: plugin.path: "/opt/redpanda/plugins"
- Open the Redpanda configuration file:
Restart Redpanda:
- Apply the changes:bash
systemctl restart redpanda
- Apply the changes:
Step 3: Create S3 Sink Connector Configuration
- Prepare the Connector Config File:
- Create a file, e.g.,
s3-sink-config.json
:json{ "name": "s3-sink-connector", "config": { "connector.class": "io.confluent.connect.s3.S3SinkConnector", "tasks.max": "1", "topics": "your_topic", "s3.bucket.name": "your-s3-bucket", "s3.region": "your-region", "s3.part.size": "5242880", "flush.size": "100", "storage.class": "io.confluent.connect.s3.storage.S3Storage", "format.class": "io.confluent.connect.s3.format.json.JsonFormat", "key.converter": "org.apache.kafka.connect.storage.StringConverter", "value.converter": "io.confluent.connect.protobuf.ProtobufConverter", "value.converter.schema.registry.url": "http://your-schema-registry:8081", "schema.compatibility": "FULL", "aws.access.key.id": "your-access-key", "aws.secret.access.key": "your-secret-key", "s3.credentials.provider.class": "com.amazonaws.auth.DefaultAWSCredentialsProviderChain" } }
- Create a file, e.g.,
Step 4: Deploy the Connector with rpk
Use rpk
to deploy the connector:
Start the Connect Framework:
bashrpk connect enable
Deploy the Connector:
bashrpk connect create --config s3-sink-config.json
Check the Status:
bashrpk connect status
Step 5: Verify Data in S3
- Check your S3 bucket to confirm the messages are being written.
- The default directory structure is:php
s3://your-bucket-name/topics/<topic-name>/partition=<partition-id>/<timestamp>.json
Let me know if you need help preparing the JAR files, configuring the schema registry, or setting up the connector!
You said:
ChatGPT said:
Here’s a detailed guide to configuring and deploying the S3 Sink Connector with Protobuf and Schema Registry integration, specifically for your setup using rpk connect
and Redpanda.
Understanding the Workflow
- Messages are produced to Redpanda topics serialized with Protobuf.
- The S3 Sink Connector consumes these messages, deserializes them using the Protobuf schema from the Schema Registry, and writes the data to an S3 bucket.
- The messages are stored in JSON, Avro, or Parquet format, based on your configuration.
Detailed Steps
Step 1: Download and Transfer Dependencies
Download the Connector:
- Download the S3 Sink Connector from Confluent Hub.
- Download the Protobuf converter JARs:
kafka-connect-protobuf-converter.jar
protobuf-java.jar
Transfer Files:
- Move the files to your Redpanda host (e.g.,
/opt/redpanda/plugins
).
- Move the files to your Redpanda host (e.g.,
Step 2: Configure Redpanda
Update the Plugin Path:
- Open
/etc/redpanda/redpanda.yaml
and add:yamlrpk: connect: plugin.path: "/opt/redpanda/plugins"
- Open
Restart Redpanda:
bashsystemctl restart redpanda
Step 3: Create Schema Registry Setup
Start a Schema Registry:
- Use a Confluent-compatible Schema Registry or deploy your own. Ensure it's accessible from your Redpanda environment.
Register Protobuf Schemas:
- Use the Schema Registry REST API to register your Protobuf schemas.
Example using
curl
:
bashcurl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \ --data '{"schema": "<protobuf_schema_string>", "schemaType": "PROTOBUF"}' \ http://your-schema-registry:8081/subjects/your-topic-value/versions
- Use the Schema Registry REST API to register your Protobuf schemas.
Example using
Step 4: Create the S3 Sink Connector Configuration
Create a file named s3-sink-config.json
with the following content:
json{
"name": "s3-sink-connector",
"config": {
"connector.class": "io.confluent.connect.s3.S3SinkConnector",
"tasks.max": "1",
"topics": "your_topic",
"s3.bucket.name": "your-s3-bucket",
"s3.region": "your-region",
"s3.part.size": "5242880",
"flush.size": "100",
"storage.class": "io.confluent.connect.s3.storage.S3Storage",
"format.class": "io.confluent.connect.s3.format.json.JsonFormat",
"key.converter": "org.apache.kafka.connect.storage.StringConverter",
"value.converter": "io.confluent.connect.protobuf.ProtobufConverter",
"value.converter.schema.registry.url": "http://your-schema-registry:8081",
"schema.compatibility": "FULL",
"aws.access.key.id": "your-access-key",
"aws.secret.access.key": "your-secret-key",
"s3.credentials.provider.class": "com.amazonaws.auth.DefaultAWSCredentialsProviderChain",
"partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner",
"locale": "en",
"timezone": "UTC"
}
}
Key Configuration Options:
- Schema Registry URL:
value.converter.schema.registry.url
: Points to your Schema Registry.
- Partitioning:
- By default, messages are stored with the structure:php
s3://your-bucket-name/topics/<topic-name>/partition=<partition-id>/<timestamp>.json
- Customize partitioning using
partitioner.class
.
- By default, messages are stored with the structure:
Step 5: Deploy the Connector with rpk
Enable
rpk connect
:bashrpk connect enable
Create the Connector:
bashrpk connect create --config s3-sink-config.json
Check Connector Status:
bashrpk connect status
Step 6: Test and Verify
- Produce Messages:
- Use your producer application to send Protobuf-serialized messages to the topic.
- Verify in S3:
- Check the S3 bucket for uploaded files. Ensure they match the configured format (e.g., JSON).
Troubleshooting
- Authentication Issues:
- If AWS credentials aren’t working, use an IAM role or ensure the
aws.access.key.id
andaws.secret.access.key
are correctly set.
- If AWS credentials aren’t working, use an IAM role or ensure the
- Schema Errors:
- Ensure your Protobuf schema is registered and matches the topic data structure.
Would you like a step-by-step guide to registering schemas or testing Protobuf deserialization?
You said:
ChatGPT said:
Yes, you can use local .proto
files to set up your own Schema Registry without internet access. This approach allows you to register Protobuf schemas manually from .proto
files instead of relying on a remote source. Here's how you can achieve this:
Steps to Set Up Schema Registry Locally Using .proto
Files
1. Deploy a Schema Registry
Download a Schema Registry Compatible with Redpanda:
- Use Confluent Schema Registry or open-source alternatives (e.g., Karapace or Apicurio).
- Transfer the Schema Registry binaries to your offline environment.
Start the Schema Registry:
- Configure and start the Schema Registry on your Redpanda host or a separate server.
- Example command for Confluent Schema Registry:bash
./bin/schema-registry-start ./etc/schema-registry/schema-registry.properties
- Update the
listeners
property in the configuration file to match your network setup.
2. Create Local .proto
Files
Prepare Your Protobuf Files:
- Place all
.proto
files in a local directory on the machine hosting the Schema Registry.
Example Protobuf file (
trade.proto
):protosyntax = "proto3"; package trade; message Trade { string tradeId = 1; string symbol = 2; int64 timestamp = 3; double price = 4; int32 quantity = 5; }
- Place all
Compile the
.proto
Files (Optional):- If needed, compile the
.proto
files for your application:bashprotoc --java_out=./generated trade.proto
- If needed, compile the
3. Register Schemas Locally
You can use the Schema Registry API to manually register the schema for your topics using the .proto
file.
Use the Schema Registry REST API:
- Register the schema by sending the
.proto
definition in a request:bashcurl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \ --data '{"schema": "syntax = \"proto3\"; package trade; message Trade { string tradeId = 1; string symbol = 2; int64 timestamp = 3; double price = 4; int32 quantity = 5; }", "schemaType": "PROTOBUF"}' \ http://localhost:8081/subjects/your-topic-value/versions
Replace:
http://localhost:8081
with your Schema Registry URL.your-topic-value
with the topic name for which this schema applies.
- Register the schema by sending the
Register Using a Local Script:
- Write a script to read
.proto
files and register them programmatically:bash#!/bin/bash for proto_file in /path/to/protos/*.proto; do schema=$(cat "$proto_file") topic_name=$(basename "$proto_file" .proto) curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \ --data "{\"schema\": \"$schema\", \"schemaType\": \"PROTOBUF\"}" \ http://localhost:8081/subjects/$topic_name-value/versions done
- Adjust the path and endpoint as needed.
- Write a script to read
4. Configure the S3 Sink Connector
Once schemas are registered, update the S3 Sink Connector configuration to use the local Schema Registry.
- Example configuration snippet:json
{ "value.converter": "io.confluent.connect.protobuf.ProtobufConverter", "value.converter.schema.registry.url": "http://localhost:8081", "schema.compatibility": "FULL" }
5. Verify the Setup
- List Registered Schemas:
- Use the Schema Registry API:bash
curl http://localhost:8081/subjects
- Use the Schema Registry API:
- Produce Messages:
- Send Protobuf-encoded messages to your Redpanda topic.
- Verify S3 Output:
- Check that messages are written to S3 in the specified format.
Advantages of Using Local .proto
Files
- No internet dependency.
- Full control over schema management.
- Easy to version and maintain schemas locally.
Would you like an example of a full .proto
file or a script for automating the schema registration process?
You said:
ChatGPT said:
Yes, you can use the local filesystem as a schema registry by storing your Protobuf schemas in files rather than using a dedicated schema registry service. This approach allows you to manage your schemas directly from your file system without needing a network-based registry. Here’s how you can set this up:
Steps to Use Local Filesystem for Schema Management
1. Create a Directory for Protobuf Schemas
- Choose a directory on your local filesystem where you will store all your
.proto
files. For example:bashmkdir /path/to/protos
2. Create Protobuf Files
- Add your Protobuf definitions as
.proto
files in the directory you created. For example, create a file calledtrade.proto
:protosyntax = "proto3"; package trade; message Trade { string tradeId = 1; string symbol = 2; int64 timestamp = 3; double price = 4; int32 quantity = 5; }
3. Modify Your Application to Load Schemas
- When you produce or consume messages in your application, you can load the corresponding
.proto
file from the filesystem to dynamically compile the schema and serialize/deserialize messages.
Example in Python Using protobuf
Library
If you are using Python, you can use the protobuf
library to load the schema from a file:
pythonimport os
from google.protobuf import json_format
from trade_pb2 import Trade # Generated from trade.proto
def load_proto_schema(proto_file_path):
with open(proto_file_path, 'r') as f:
return f.read()
# Example usage
schema_file = '/path/to/protos/trade.proto'
proto_schema = load_proto_schema(schema_file)
# Create a Trade message
trade = Trade(tradeId="T123", symbol="AAPL", timestamp=1635705600, price=150.0, quantity=100)
# Serialize the message to bytes
serialized_trade = trade.SerializeToString()
# Deserialize the message from bytes
received_trade = Trade()
received_trade.ParseFromString(serialized_trade)
4. Configure the S3 Sink Connector
If you are using the S3 Sink Connector with Protobuf messages, you can configure it to work with the local schema files. However, the S3 Sink Connector typically requires a schema registry endpoint for Protobuf deserialization.
Instead, you could use a custom connector or script that reads the
.proto
files from the filesystem, compiles them dynamically, and handles the serialization/deserialization.
5. Additional Considerations
- Versioning: You will need to manage schema versions manually by maintaining different
.proto
files for each version. - Error Handling: Implement error handling in your application to manage cases where a schema might not be found.
- Schema Compatibility: Without a dedicated schema registry, you will need to ensure that the producer and consumer applications are compatible with the schema changes.
Conclusion
Using a local filesystem for Protobuf schemas allows for flexibility and simplicity, especially in offline environments. However, it does require that you manage schema versions and compatibility manually. If your applications can load and compile the schemas dynamically, this approach can work well.
If you need further assistance with code examples or setup, feel free to ask!
You said:
ChatGPT said:
Here’s a detailed document on how to install and configure the S3 Sink Connector with Protobuf using a local file system as a schema registry. This guide covers everything from setup to configuration and testing.
Installing and Configuring S3 Sink Connector with Protobuf Using Local File Registry
Overview
This document provides step-by-step instructions to set up the S3 Sink Connector for Redpanda, using Protobuf for serialization and a local file system to manage Protobuf schemas. The connector will read messages from a specified Redpanda topic and write them to an S3 bucket.
Prerequisites
- Redpanda Cluster: Ensure you have a running instance of Redpanda.
- S3 Bucket: Create an S3 bucket where messages will be stored.
- Local File System: Set up a directory to hold your
.proto
files for schema management. - JDK: Ensure Java is installed on your system (Java 8 or higher).
- Access to AWS Credentials: Ensure you have AWS credentials to write to the S3 bucket.
Step 1: Download and Install Redpanda and the S3 Sink Connector
Download Redpanda:
- Follow the installation instructions from the Redpanda documentation.
Install the S3 Sink Connector:
- Download the S3 Sink Connector from the Confluent Hub or another source and transfer it to your Redpanda host.
- The necessary connector files should be placed in the appropriate plugin directory (e.g.,
/opt/redpanda/plugins
).
Step 2: Configure Redpanda for Connectors
Edit the Redpanda Configuration:
- Open the Redpanda configuration file (
redpanda.yaml
) and ensure it includes the connector plugin path:yamlrpk: connect: plugin.path: "/opt/redpanda/plugins"
- Open the Redpanda configuration file (
Restart Redpanda:
bashsystemctl restart redpanda
Step 3: Set Up Local Protobuf Schema Files
Create a Directory for Protobuf Schemas:
bashmkdir /path/to/protos
Create Your Protobuf Schema Files:
- For example, create a file named
trade.proto
with the following content:
protosyntax = "proto3"; package trade; message Trade { string tradeId = 1; string symbol = 2; int64 timestamp = 3; double price = 4; int32 quantity = 5; }
- For example, create a file named
Step 4: Create the S3 Sink Connector Configuration
Create the Connector Configuration File:
- Create a file named
s3-sink-config.json
with the following content:
json{ "name": "s3-sink-connector", "config": { "connector.class": "io.confluent.connect.s3.S3SinkConnector", "tasks.max": "1", "topics": "your_topic", "s3.bucket.name": "your-s3-bucket", "s3.region": "your-region", "s3.part.size": "5242880", "flush.size": "100", "storage.class": "io.confluent.connect.s3.storage.S3Storage", "format.class": "io.confluent.connect.s3.format.json.JsonFormat", "key.converter": "org.apache.kafka.connect.storage.StringConverter", "value.converter": "io.confluent.connect.protobuf.ProtobufConverter", "value.converter.schema.registry.url": "file:///path/to/protos", "schema.compatibility": "FULL", "aws.access.key.id": "your-access-key", "aws.secret.access.key": "your-secret-key", "s3.credentials.provider.class": "com.amazonaws.auth.DefaultAWSCredentialsProviderChain", "partitioner.class": "io.confluent.connect.storage.partitioner.DefaultPartitioner" } }
Replace:
your_topic
with the topic you will produce messages to.your-s3-bucket
with the name of your S3 bucket.your-region
with your AWS region.- Provide your AWS access key and secret key.
- Create a file named
Step 5: Deploy the Connector
Enable
rpk connect
:bashrpk connect enable
Create the Connector:
bashrpk connect create --config s3-sink-config.json
Check the Connector Status:
bashrpk connect status
Step 6: Testing the Setup
Produce Protobuf Messages:
- Use your producer application to send Protobuf-serialized messages to the specified Redpanda topic.
Verify the Output in S3:
- Check your S3 bucket to ensure that messages are written in the expected format.
Troubleshooting
- Connector Issues: Check logs for errors related to the S3 Sink Connector using:bash
rpk connect logs
- Schema Errors: Ensure the Protobuf schema is correctly defined and matches the messages being produced.
Conclusion
By following this guide, you have set up the S3 Sink Connector for Redpanda to store messages in S3, using local Protobuf schema files for serialization. This setup allows you to manage your schemas efficiently without an internet connection.
If you need further customization or assistance, feel free to ask!
You said:
ChatGPT said:
Here's a detailed section on installing the S3 Sink Connector as part of the document for setting up the S3 Sink Connector with Protobuf using a local file registry.
Step 1: Download and Install the S3 Sink Connector
1.1 Prerequisites
Before installing the S3 Sink Connector, ensure that you have the following:
- Java Development Kit (JDK): The S3 Sink Connector requires Java 8 or higher. You can check if Java is installed with the following command:
If it is not installed, you can install it using:bashjava -version
bashsudo apt-get update sudo apt-get install openjdk-11-jdk
1.2 Downloading the Connector
You can download the S3 Sink Connector from the Confluent Hub or build it from source. Below are instructions for both methods:
Method A: Download from Confluent Hub
- Go to the Confluent Hub and download the latest version of the S3 Sink Connector.
- Alternatively, you can use the following command to download the connector directly to your server (replace
x.y.z
with the desired version):bashcurl -O https://packages.confluent.io/archive/7.0/confluent-hub-client-latest.zip
Method B: Build from Source
Clone the Kafka Connect S3 repository:
bashgit clone https://github.com/confluentinc/kafka-connect-storage-plugins.git cd kafka-connect-storage-plugins
Navigate to the S3 directory:
bashcd kafka-connect-s3
Build the connector using Maven:
bashmvn clean package
The built connector will be available in the
target
directory.
1.3 Install the Connector
Create a Directory for Connectors: Create a directory where you will store the connector files:
bashmkdir -p /opt/redpanda/plugins/s3
Copy the Connector Files: If you downloaded the connector from Confluent Hub, unzip it and copy the contents to the connector directory:
bashunzip confluent-hub-client-latest.zip -d /opt/redpanda/plugins/s3
If you built the connector from source, copy the JAR files from the
target
directory to the same location:bashcp target/* /opt/redpanda/plugins/s3/
Verify Installation: Ensure that the connector files are correctly placed in the
/opt/redpanda/plugins/s3
directory:bashls /opt/redpanda/plugins/s3
1.4 Configure Redpanda to Use the Connector
Edit the Redpanda Configuration: Open the Redpanda configuration file (
redpanda.yaml
) and add the connector plugin path:yamlrpk: connect: plugin.path: "/opt/redpanda/plugins"
Restart Redpanda: After editing the configuration, restart Redpanda to load the new connector:
bashsystemctl restart redpanda
Conclusion of Installation
You have successfully installed the S3 Sink Connector. This connector can now be used to transfer messages from Redpanda topics to an S3 bucket, leveraging Protobuf for serialization. The next steps involve configuring the connector and setting up your Protobuf schemas.
If you have any questions or need further assistance, feel free to ask!
No comments:
Post a Comment