Using AWS Serverless Application Model (SAM) and JDBC driver for Snowflake, you can set up a Lambda function to serve as a federated query connector, enabling Amazon Athena to query Snowflake data. Here’s a comprehensive step-by-step guide, from setting up the environment to deploying the SAM template and calling Snowflake from Athena.
Overview
- Download and Upload Snowflake JDBC Driver to S3.
- Create a Lambda Layer with the JDBC driver using SAM.
- Configure the Lambda Function in SAM for Athena to query Snowflake.
- Deploy the Application using SAM CLI.
- Register the Connector in Athena.
- Query Snowflake from Athena.
Step 1: Download the Snowflake JDBC Driver and Upload to S3
Download JDBC Driver:
- Get the JDBC driver JAR file from the Snowflake Documentation.
Upload to S3:
- Choose an S3 bucket where you have permission to upload. For example,
my-s3-bucket
. - Upload the
snowflake-jdbc-<version>.jar
file to this bucket. Note the S3 URI (s3://my-s3-bucket/snowflake-jdbc-<version>.jar
).
Step 2: Create the SAM Application with the JDBC Layer and Lambda Function
Directory Structure
template.yaml
(SAM Template)Replace:
s3://my-s3-bucket/snowflake-jdbc-<version>.jar
with the actual path of your uploaded Snowflake JDBC driver.your_snowflake_account
,your_snowflake_user
, etc., with your Snowflake connection details.
Step 3: Write the Lambda Function Code
Create the app.py
file inside the src/
directory to handle connections and query execution.
src/app.py
import snowflake.connectorimport osimport json
def lambda_handler(event, context): # Extract SQL query from Athena event sql_query = event.get('query') if not sql_query: return {"error": "No query provided"}
# Establish connection to Snowflake conn = snowflake.connector.connect( user=os.getenv('SNOWFLAKE_USER'), password=os.getenv('SNOWFLAKE_PASSWORD'), account=os.getenv('SNOWFLAKE_ACCOUNT'), warehouse=os.getenv('SNOWFLAKE_WAREHOUSE'), database=os.getenv('SNOWFLAKE_DATABASE'), schema=os.getenv('SNOWFLAKE_SCHEMA') )
cursor = conn.cursor() try: # Execute the query cursor.execute(sql_query) # Fetch results results = cursor.fetchall()
# Format the results in a way Athena can interpret response = [{"column_name": value for value in row} for row in results] return {"statusCode": 200, "body": json.dumps(response)}
except Exception as e: return {"error": str(e)}
finally: cursor.close() conn.close()
Step 4: Deploy the SAM Application
Build and Package:
sam build
sam package --s3-bucket my-s3-bucket --output-template-file packaged.yaml
- Deploy the SAM Application:
sam deploy --template-file packaged.yaml --stack-name AthenaSnowflakeConnector --capabilities CAPABILITY_IAM
The stack will create the Lambda function and layer, enabling it to connect to Snowflake with the JDBC driver.
Step 5: Register the Connector in Athena
Go to the Athena Console:
- Open the Athena Console.
- Go to Data Sources > Connect Data Source.
- Select Lambda as the connection type.
Choose the Lambda Function:
- Select the
AthenaSnowflakeConnector
Lambda function from the list. - Name the data source (e.g.,
snowflake_connector
).
Test the Connection:
- Run a test query in Athena, such as:
- SELECT * FROM snowflake_connector."your_database"."your_schema"."your_table" LIMIT 10;
- Athena will invoke the Lambda function, which will execute the SQL query in Snowflake and return the results.
Step 6: Query Snowflake Data in Athena
Now, you can use Athena’s SQL interface to query Snowflake data using the snowflake_connector
you configured.
SELECT * FROM snowflake_connector."your_database"."your_schema"."your_table" LIMIT 10;
No comments:
Post a Comment