Tuesday, 9 December 2025

Databricks Beginner Guide

Databricks Beginner Guide & Use Cases

Databricks Beginner Guide & Use Cases

Basics of Databricks

Databricks is a unified data and AI platform built on Apache Spark. It is used for big data processing, analytics, and machine learning. Databricks simplifies distributed computing and provides a collaborative workspace for Data Engineers, Data Scientists, and Analysts.

Key Features of Databricks

  • Delta Lake: ACID-compliant storage for batch & streaming data.
  • Scalable Clusters: Auto-scaling Spark clusters for big data workloads.
  • MLflow Integration: Experiment tracking and model management.
  • Structured Streaming: Real-time data processing.
  • Notebooks: Support for Python, SQL, Scala, and R in a collaborative workspace.
  • Data Lakehouse: Unified architecture for structured and unstructured data.
  • Integrations: Works with AWS S3, Azure Data Lake Storage, Kafka, and more.

5 Use Cases with Technical Implementation

Use Case Cluster Type / Runtime Notebook Name Technical Implementation
1. ETL Pipeline Standard Spark Cluster ETL_Pipeline
# Load JSON from S3
df = spark.read.json("s3://my-bucket/raw_logs/")
# Clean data
df_clean = df.select("userId","eventType","timestamp").filter(df.eventType!="ignore")
# Save as Delta
df_clean.write.format("delta").mode("overwrite").save("/mnt/delta/clean_logs")
2. Real-Time Streaming Databricks ML / Spark Streaming Runtime Streaming_IoT
# Read from Kafka
streaming_df = spark.readStream.format("kafka")\
    .option("kafka.bootstrap.servers","kafka:9092")\
    .option("subscribe","iot_sensors").load()

# Parse JSON & filter anomalies
from pyspark.sql.functions import from_json, col, schema_of_json
json_schema = schema_of_json('{"sensorId":"string","temperature":"double"}')
parsed_df = streaming_df.select(from_json(col("value").cast("string"), json_schema).alias("data")).select("data.*")
anomalies = parsed_df.filter(col("temperature") > 100)

# Write to console
query = anomalies.writeStream.outputMode("append").format("console").start()
query.awaitTermination()
3. ML Model Training Databricks ML Runtime ML_Churn_Model
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml import Pipeline

data = spark.read.format("delta").load("/mnt/delta/customer_data")
assembler = VectorAssembler(inputCols=["age","account_age","num_transactions"], outputCol="features")
rf = RandomForestClassifier(featuresCol="features", labelCol="churn")
pipeline = Pipeline(stages=[assembler, rf])
model = pipeline.fit(data)
model.write().overwrite().save("/mnt/models/churn_model")
4. Data Analytics / Exploration Standard Spark Cluster Sales_Analysis
import matplotlib.pyplot as plt

sales_df = spark.read.format("delta").load("/mnt/delta/sales_data")
sales_pd = sales_df.groupBy("month").sum("revenue").toPandas()
plt.plot(sales_pd["month"], sales_pd["sum(revenue)"])
plt.title("Monthly Sales Trend")
plt.xlabel("Month")
plt.ylabel("Revenue")
plt.show()
5. Data Lakehouse / Delta Lake Standard Spark Cluster Delta_Lakehouse
# Load CSV & JSON
csv_df = spark.read.format("csv").option("header","true").load("/mnt/raw/csv_data")
json_df = spark.read.format("json").load("/mnt/raw/json_data")

# Combine & save as Delta
combined_df = csv_df.unionByName(json_df)
combined_df.write.format("delta").mode("overwrite").save("/mnt/delta/combined_data")

# SQL query
spark.sql("SELECT count(*) FROM delta.`/mnt/delta/combined_data`").show()

Technical Flow in Databricks

  1. Create Cluster → select runtime (Spark / ML / GPU if needed).
  2. Mount storage → S3, ADLS, or DBFS.
  3. Create Notebook → Python / SQL / Scala.
  4. Write code → ETL, ML, Streaming, Analytics.
  5. Attach Notebook to Cluster → Run & Monitor.
  6. Save results → Delta Tables, ML Models, Visualizations.

No comments:

Post a Comment