Thursday, 26 June 2025

Lake House - 1

 

Concept 

Description 

Lake House 

Architecture pattern that combines the benefits of a data lake (like Amazon S3) and a data warehouse (like Redshift). It provides a unified platform for analytics, machine learning, and reporting. 

 

Lake Formation 

❌ Not an architecture — it's an AWS service used to build and govern secure data lakes, often used as part of a Lake House implementation. 

 

 

🔍 As an architecture pattern, Lake House aims to: 

  • Store all data (structured, semi-structured, unstructured) in one place (usually object storage like S3) 

  • Query it using different engines (Athena, Redshift Spectrum, EMR, Flink, SageMaker) 

  • Enforce schema, governance, access controls 

  • Enable advanced analytics and ML workflows 

 

✅ Key Characteristics of the Lake House Architecture Pattern: 

Feature 

Description 

Storage-first 

Object storage (like S3) is the central source of truth 

Open formats 

Uses formats like Parquet, ORC, Iceberg for compatibility and performance 

Multiple engines 

Redshift, Athena, Spark, Flink, SageMaker access the same data 

Schema evolution 

Supports schema-on-read and schema enforcement as needed 

Unified governance 

Manages access control, lineage, audit (e.g., via AWS Lake Formation) 

 

 

🔷 Why Lake House? 

Traditional data architectures have limitations: 

  • Data warehouses are expensive and optimized for structured data. 

  • Data lakes are cheaper and store all types of data, but lack strong governance, consistency, and performance for analytics. 

Lake House combines both worlds: 

  • Central data store (data lake) in open formats like Apache Iceberg, Delta Lake, or Hudi 

  • Federated queries and warehouse capabilities using tools like Amazon Redshift Spectrum, Athena, Presto, BigQuery, or Databricks 

 

🔷 Key Components 

Layer 

Description 

AWS Services 

Data Storage 

Store raw and curated data in open formats like Parquet, ORC, Iceberg, etc. 

Amazon S3 

Metadata Catalog 

Central schema repository, schema evolution, partitioning 

AWS Glue Data Catalog 

Data Lake Governance 

Secure, fine-grained access controls, row-level permissions 

AWS Lake Formation 

Data Processing 

ETL/ELT, streaming, batch 

AWS Glue, EMR (Spark, Flink), Lambda 

Data Warehouse / Query Engines 

Fast SQL access to data 

Amazon Redshift, Athena, Redshift Spectrum 

Machine Learning 

Train and deploy ML models directly on lake data 

Amazon SageMaker 

BI & Visualization 

Reports, dashboards, ad-hoc queries 

Amazon QuickSight, Tableau, Power BI 

🔷 Data Flow Example (Lake House Pipeline on AWS) 

       ┌──────────────────────────┐ 
        │  Raw Data (Logs, JSON)   │ 
        └──────────┬───────────────┘ 
                   ▼ 
           +------------------+ 
           |    Amazon S3     | ← Data Lake (Raw Zone) 
           +------------------+ 
                   ▼ 
          ┌─────────────────────┐ 
          │ Glue Crawler + ETL │ ← Structuring and Cleaning 
          └─────────────────────┘ 
                   ▼ 
           +------------------+ 
           |  S3 (Curated Zone)| 
           +------------------+ 
                   ▼ 
    ┌──────────────┬───────────────┐ 
    ▼              ▼               ▼ 
Athena      Redshift Spectrum     SageMaker 
(SQL Query)    (Warehouse Query)     (ML on S3) 
 
               ▼ 
         QuickSight (BI) 
 

Benefits of Lake House 

Benefit 

Description 

✅ Unified Data Platform 

Use one storage layer (S3) for raw, curated, and analytics-ready data 

✅ Open Table Formats 

Work with Apache Iceberg, Delta Lake, etc., supporting ACID, schema evolution, time travel 

✅ Cost-Efficient 

Store once (on S3), query with different engines 

✅ Scalable 

Massive scalability with S3 and serverless tools like Athena 

Multi-purpose 

Supports analytics, machine learning, real-time and batch pipelines 

✅ Governance 

Lake Formation provides 

 

 

 

🔷 Open Table Formats in Lake House 

These are essential to make S3 act like a database: 

Format 

Features 

Apache Iceberg 

Hidden partitioning, time travel, snapshot isolation, schema evolution 

Delta Lake 

ACID transactions, schema enforcement, time travel 

Apache Hudi 

Fast upserts, incremental queries, great for streaming data 

AWS Athena, EMR, Redshift, and Flink now support Iceberg and Hudi. 

 

 

🔷 Example AWS Lake House Architecture 

plaintext 

CopyEdit 

[IoT, App Logs, Files] 
       │ 
       ▼ 
+----------------------+ 
|     Amazon S3        | ← Raw Zone 
+----------------------+ 
       │ 
+----------------------+ 
| AWS Glue (ETL Jobs)  | 
| Glue Crawlers        | 
+----------------------+ 
       ▼ 
+----------------------+ 
| Amazon S3 (Curated)  | 
| Glue Catalog Tables  | 
+----------------------+ 
  │        │         │ 
  ▼        ▼         ▼ 
Athena   Redshift  SageMaker 
(SQL)    (DWH)     (ML) 
 
      ▼ 
 QuickSight BI 

 

✅ Summary 

Feature 

Lake House Architecture 

Combines 

Data Lake + Data Warehouse 

Storage 

Amazon S3 (open formats: Iceberg, Delta) 

Compute 

Serverless (Athena), DWH (Redshift), ML (SageMaker) 

Governance 

Lake Formation 

Query Engines 

Athena, EMR, Redshift Spectrum 

Benefits 

Unified analytics, cost-efficient, scalable, secure 

 

 

No comments:

Post a Comment